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1 Truthmaker Semantics

1.1 Comparison

Truthmaker
Semantics

Possible World
Semantics

Logical Space States Possible Worlds
can be

incomplete
and/or

inconsistent

complete and
consistent

Truthmaking Exact
Verification Necessitation

fully relevant not fully relevant
non-monotonic monotonic

Table 1: Differences between TMS and PWS

1.2 State Space

Definition 1 (State Space). A state space is an ordered pair ⟨𝑆, ⊑⟩, where 𝑆

(states) is a set and ⊑ (parthood/substate relation) is a complete partial order
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on 𝑆. (A order is complete iff each subset of its domain has a least upper bound

w.r.t. the order.)

Definition 2 (Fusion). Given a subset𝑇 = {𝑡1, 𝑡2, ...} of 𝑆, we call the least upper

bound of 𝑇 the fusion of 𝑇 . We use ⊔𝑇 or more often 𝑡1 ⊔ 𝑡2 ⊔ ... to represent the

fusion of 𝑇 .

Some results:

Proposition 3. There is a least state □ =
⊔ ∅ and a greatest state ■ =

⊔
𝑆 w.r.t.

⊑ in a state space.

Proposition 4. Each subset 𝑇 = {𝑡1, 𝑡2, ...} of 𝑆 has a greatest lower bound

(
⊔{𝑠 ∈ 𝑆 : 𝑠 ⊑ 𝑡 for all 𝑡 ∈ 𝑇}). We donote it by

⊓
𝑇 or 𝑡1 ⊓ 𝑡2 ⊓ ....

1.3 Models

Definition 5 (Truthmaker Model). A truthmaker model is a triple ⟨𝑆, ⊑, | · |⟩

where ⟨𝑆, ⊑⟩ is a state space and | · | a function mapping each state 𝑠 to a pair

⟨|𝑠 |+, |𝑠 |−⟩ with |𝑠 |+ and |𝑠 |− non-empty sets of sentential letters.

Evaluation of boolean sentences is defined by the following clauses:

Definition 6. (i)+ 𝑠 ⊩ 𝑝 iff 𝑝 ∈ |𝑠 |+;

(i)- 𝑠 ⊩𝑝 iff 𝑝 ∈ |𝑠 |−;

(ii)+ 𝑠 ⊩ ¬𝐵 iff 𝑠 ⊩𝐵;

(ii)- 𝑠 ⊩¬𝐵 iff 𝑠 ⊩ 𝐵;

(iii)+ 𝑠 ⊩ 𝐵 ∧ 𝐶 iff for some 𝑡, 𝑢 such that 𝑡 ⊩ 𝐵, 𝑢 ⊩ 𝐶 and 𝑠 = 𝑡 ⊔ 𝑢;

(iii)- 𝑠 ⊩𝐵 ∧ 𝐶 iff 𝑠 ⊩𝐵 or 𝑠 ⊩𝐶;
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(iv)+ 𝑠 ⊩ 𝐵 ∨ 𝐶 iff 𝑠 ⊩ 𝐵 or 𝑠 ⊩ 𝐶;

(iv)- 𝑠 ⊩𝐵 ∨ 𝐶 iff for some 𝑡, 𝑢 such that 𝑡 ⊩𝐵, 𝑢 ⊩𝐶 and 𝑠 = 𝑡 ⊔ 𝑢.

For convenience, I will use |𝐴|+ and |𝐴|− to denote the set of all exact

verifiers/falsifiers of 𝐴.

In terms of exact verification and falsification, Fine also defines two looser

relations:

Definition 7. Given a model𝔐, for a state 𝑠 and a formula 𝐴, 𝑠 inexactly verifies

𝐴 (𝑠 | |> 𝐴) iff there is a 𝑡 ⊑ 𝑠 such that 𝑡 ⊩ 𝐴; 𝑠 inexactly falsifies 𝐴 (𝑠 <| |𝐴) iff

there is a 𝑡 ⊑ 𝑠 such that 𝑡 ⊩𝐴.

2 Relation to Boolean Semantics

The author suggests that Truthmaker Models also provide an “exactification” of

Boolean (Truth-valuation) Semantics in the sense that all the semantical notions

in the latter can be definedin the former. Take the semantics for classical logic as

an example. We can resurrect the semantics in TMS by considering the special

class of atomically sound and complete states:

Definition 8 (Atomically Sound and Complete States). 1. A state 𝑠 is atom-

ically sound if for no 𝑝, 𝑠 | |> 𝑝 and 𝑠 <| |𝑝;

2. A state 𝑠 is atomically complete if for any 𝑝, 𝑠 | |> 𝑝 or 𝑠 <| |𝑝.

Then, Γ classically entails 𝐴 just in case for any truthmaker model ⟨𝑆, ⊑, | · |⟩

and any atomically sound and complete state 𝑠 ∈ 𝑆, if 𝑠 | |> 𝐵 for all 𝐵 ∈ Γ, then

𝑠 | |> 𝐴.
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3 Informal Analysis of the Modal Operators

The analysis is based on the following “Kripke’s Principle (KP)”:

□𝐴 is true only if the apparent possibilities of 𝐴 being false are not

real.1 1 Consider Kripke’s argu-

ment for dualism.
We may understand this as suggesting that a sentence is necessarily true if all its

falsifiers are banned. So the author suggests introducing a new function into the

model representing the “banning” relation. Note that the author posits a special

subset of states 𝑀 consisting of “modal states”. Only modal states can ban other

states. So for each 𝑠 ∈ 𝑀 , 𝛽(𝑠) is the set of states banned by 𝑠.

Now let’s turn to the exact verifiers for □𝐴. When 𝐴 has only one falsifier,

then any modal state banning this falsifier suffices to be an exact verifier for □𝐴.

But when 𝐴 has multiple falsifiers, there may not be one modal states banning all

falsifiers for 𝐴. In this case, we may consider multiple modal states that jointly

ban all falsifiers for 𝐴. So, we define a function 𝑓 , intuitively, a ban on the exact

falsifiers for 𝐴, from |𝐴|− to 𝑀 such that for each 𝑡 ∈ |𝐴|−, 𝑡 ∈ 𝛽( 𝑓 (𝑡)).2 2 Intuitively, 𝑓 helps us find

a state (“a ban on 𝑡”) that

bans 𝑡.
Having this in mind, we can understand an exact verifier for □𝐴 as the fusion

of “the bans on the exact falsifiers for 𝐴”:

𝑠 ⊩ □𝐴 iff 𝑠 =
⊔
𝑟𝑎𝑛( 𝑓 ), where 𝑓 is a ban on the exact falsifiers

for 𝐴.

Let’s turn to ^𝐴. We cannot determine what makes ^𝐴 true simply based

on waht a modal state ban. We need to assign to each modal state 𝑠 a set 𝛼(𝑎)

of states allowed by 𝑠. Then we have

𝑠 ⊩ ^𝐴 iff there exists some 𝑡 ∈ |𝐴|+ s.t. 𝑡 ∈ 𝛼(𝑠).
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For falsification, we can take the duals of the verification conditions:

𝑠

⊩□𝐴 iff there exists some 𝑡 ∈ |𝐴|− s.t. 𝑡 ∈ 𝛼(𝑠).

𝑠

⊩^𝐴 iff 𝑠 =
⊔
𝑟𝑎𝑛( 𝑓 ), where 𝑓 is a ban on the exact verifiers for

𝐴.

Putting it together, a truthmaker semantics for modal logics can be based on

the following model:

Definition 9. A modalized truthmaker model (m-model in short) is a quadruple

⟨𝑆, ⊑, 𝜇, | · |⟩, where:

1. ⟨𝑆, ⊑⟩ is a state space;

2. 𝜇 is a function with domain 𝑀 ⊂ 𝑆 assigning each 𝑠 ∈ 𝑀 a pair

⟨𝛼(𝑠), 𝛽(𝑠)⟩ of subsets of 𝑆;

3. | · | is a function mapping each 𝑠 ∈ 𝑆 to a pair ⟨|𝑠 |+, |𝑠 |−⟩ of non-empty

sets of sentential letters.

4 Relation to the Kripke Semantics

It remains to show that the propose semantics exactifies the Kripke Semantics.

The crux is to give an account of accessibility in terms of the allowing and

banning relations. To do this, we need an inexact conception of allowing and

banning:

Definition 10. 𝑡 is inexactly allowed by 𝑠 (𝑡 ∈ 𝛼(𝑠)) just in case 𝑡 ∈ 𝛼(𝑠′) for

some modal state 𝑠′ ⊑ 𝑠;

𝑡 is inexactly banned by 𝑠 (𝑡 ∈ 𝛽(𝑠)) just in case 𝑡 ∈ 𝛽(𝑠′) for some modal

state 𝑠′ ⊑ 𝑠.
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We would expect the inexact version of allowing and banning to be closed

under certain conditions:

𝛼(𝑠) should be downward closed: if 𝑡 ∈ 𝛼(𝑠) then for all 𝑡′ ⊑ 𝑡,

𝑡′ ∈ 𝛼(𝑠);

𝛽(𝑠) should be upward closed: if 𝑡 ∈ 𝛽(𝑠) then for all 𝑡′ ⊒ 𝑡,

𝑡′ ∈ 𝛽(𝑠).3 3 We can define 𝑡 ∈ 𝛽(𝑠)

just in case there are some

𝑠′ ⊑ 𝑠 and some 𝑡 ′ ⊑ 𝑡 s.t.

𝑡 ′ ∈ 𝛽(𝑠). Then the clo-

sure condition is automati-

cally satisfied.

Then we should define possible worlds in the modalized state space.4 A

4 Note that Fine (2017) pro-

vides a different way to

construct possible worlds

in state spaces.

possible world should be sound and complete not only in the sense that it

determines the truth of every atomic sentences (and hence of boolean sentences)

but also in determining the truth of all modal sentences.

Definition 11. 𝑠 is modally sound iff for no 𝑡, 𝑡 ∈ 𝛼(𝑠) ∩ 𝛽(𝑠);

𝑠 is modally complete iff for all 𝑡, 𝑡 ∈ 𝛼(𝑠) ∪ 𝛽(𝑠).

Having these in mind, we have the following equivalence between accessi-

bility and inexact allowing:

𝑤′is accessible from w ⇔ 𝑤′ ∈ 𝛼(𝑤)

Now, we would expect that the truth of a modal sentence at a world corre-

sponds to the existence of some of its verifiers. The case for□𝐴 is straightforward.

If □𝐴 is made true at 𝑤, than all worlds where 𝐴 is false are inexactly banned by

𝑤. For ^𝐴, we need the following “robust condition” of 𝑤:

(R) If 𝑡 ∈ 𝛼(𝑤), then there is a possible world 𝑤′ s.t. 𝑡 ⊑ 𝑤′ and

𝑤′ ∈ 𝛼(𝑤).
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So, we can take a world in the proposed account to be a modally sound and

complete state that is robust. With these definitions and conditions, we can show

that a modal sentence is true at a world just in case there is some of its truthmaker

obtaining at (in the sense of being a part of) the world. We can also understand

consequence of modal logic as truth-preservation at all worlds:

For Γ∪{𝐴} a set of modal sentences, Γ entails 𝐴 iff for any m-model

⟨𝑆, ⊑, 𝜇, | · |⟩ and world 𝑤 ∈ 𝑆, if 𝑤 | |> 𝐵 for all 𝐵 ∈ Γ, then 𝑤 | |> 𝐴.

5 Models without Possible Worlds

One may be reluctant to involve possible worlds in a state-based semantics. The

author proposes another way to understand modal logic in m-models.

Definition 12. Given a m-modal ⟨𝑆, ⊑, 𝜇, | · |⟩:

1. A state is a modal boundary iff 𝑠 is modally sound and any proper extension

of 𝑠 is not;

2. The set of absolute possibilities 𝑆^ = {𝑡 ∈ 𝑆 | 𝑡 ⊑ 𝑠 for some modal boundary 𝑠 ∈

𝑆}.

Note that a modal boundary is not necessarily a world in the above sense. In

fact, there are (normal) m-models without any world. See Example 4 in Chapter

2. The author suggests understanding the semantic notions in terms of absolute

possibilities. For example, the consequence relation can be defined as:

For Γ∪{𝐴} a set of modal sentences, Γ entails 𝐴 iff for any m-model

⟨𝑆, ⊑, 𝜇, | · |⟩ and 𝑠 ∈ 𝑆^, if 𝑠 | |> 𝐵 for all 𝐵 ∈ Γ, then 𝑠 ̸<| |𝐴.
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However, this may not establish normal modal logics, for the axiom 𝐾 is

possibly falsified by some absolute possibilities. The crux is that when a state

𝑡 is not compatible with both the verifiers and falsifiers of a sentence, from the

perspective of a possibility 𝑠, 𝑡 must be taken as impossible by 𝑠. This can be

guaranteed by the condition:

For a modal boundary 𝑠5, if 𝑡 is 𝑠-incompatible with |𝐴|+ ∪ |𝐴|− 5 It suffices to only impose

the constraint on modal

boundaries. See the proof

of Theorem 5.

with 𝐴 some sentence, i.e.,

{𝑡} ⊔ (|𝐴|+ ∪ |𝐴|−) ⊆ 𝛼(𝑠),

then 𝑡 ∈ 𝛼(𝑠).

This condition can be further simplified. Models with modal boundaries satis-

fying these (and some further) conditions are called normal m-models.

6 From Normal M-models to W-models

W-models are normal m-models whose modal boundaries are sound and com-

plete. It can be shown that every normal m-model can be “completed” into a

w-model. See Section 2.5.

Since we can move back and forth between Kripke models and w-models

(which are also normal m-models), we can show that the class of Kripke models

and the class of normal m-models determine the same logic.

8



References

Fine, K. (2017). Truthmaker Semantics. A Companion to the Philosophy of

Language, pages 556–577.

9


	Truthmaker Semantics
	Comparison
	State Space
	Models

	Relation to Boolean Semantics
	Informal Analysis of the Modal Operators
	Relation to the Kripke Semantics
	Models without Possible Worlds

