Symmetric relations, symmetric theories, and Pythagrapheanism

The Orthodox: It's not the case that every basic relation is symmetric. Specifically, no interesting non-symmetric relations non-symmetric relations are reducible to symmetric ones.

Non-interesting relations: relations like $R(x, y):=\operatorname{iff} F(x) \wedge \neg F(y) . R$ is not symmetric but easily reducible.

Aim: There is no compelling reason to insist that there must be non-symmetric basic relations.

Assume that Gottftied defines P_{R}^{x} as $\lambda y R(x, y)$, and proposes the reduction from $R(x, y)$ to P_{R}^{x}. Something is wrong: first-order logic is decidable, but polyadic first-order logic is undecidable. So no reduction.

In order to overthrow the orthodoxy, we must (at least) show how we can theorize about non-symmetric relations using only symmetric relations.

A predicate, R, is symmetric in a theory T iff both R is two-placed and $T \vdash \forall x \forall y(R(x, y) \rightarrow$ $R(y, x)$); otherwise, R is non-symmetric in T. The theory T itself is symmetric iff ev-
ery T-primitive is symmetric in T.
A theory, T, is a graph theory iff T fis only non-logical primitive is " E ", which is symmetric and irreflexive in T, i.e. $T \vdash \forall x \neg E(x, x)$.

A map $H: \Sigma \rightarrow \Sigma^{\prime}$ is a reconstrual if it satisfies the following condition:

1. For every n-ary predicate $P \in \Sigma, H P\left(x_{1}, \ldots, x_{n}\right)$ is a Σ^{\prime}-formula with n free variables.
2. For every constant $c \in \Sigma, H c$ is a c.

A map $*$ from Σ-formulae to Σ^{\prime}-formulae is a translation (relative to H) from Σ to Σ^{\prime} if $*$ satisfies the following conditions:

1. $\left(P t_{1} \ldots t_{n}\right)^{*}:=\exists x_{1} \ldots x_{n}\left(h t_{1}\left(x_{1}\right) \wedge \cdots \wedge h t_{n}\left(x_{n}\right) \wedge H P\left(x_{1}, \ldots, x_{n}\right)\right)$,
2. $(\exists x \phi(x))^{*}:=\exists x\left(\delta_{\eta}(x) \rightarrow \phi^{*}\right)$, where $\delta_{\eta}(x)$ is a Σ^{\prime}-formula called domain formula,
3. η commutes with Boolean connectives.

An interpretation $*: T \rightarrow S$ is translation such that if $T \vdash \phi$ then $S \vdash \phi^{*} . *$ is faithful iff $T \vdash \phi$ iff $S \vdash \phi^{*}$.

1 The Rough Idea

A non-symmetric relation can be regarded as a directed graph $R_{D} . R_{G}$ is a way using undirected graph to reconstruct R_{D} : let E be R_{G} 's edge relation. Define $\operatorname{Old}(x):=$ $\forall v(E(x, v) \rightarrow($ exactly 3 entities have edges to $v))$. Define $R^{*}:=$ there are e_{1}, \ldots, e_{7} such that: $E\left(x, e_{1}\right), E\left(y, e_{4}\right), E\left(e_{1}, e_{2}\right), \ldots, E\left(e_{6}, e_{7}\right)$, but there are no other edges involving any of e_{1}, \ldots, e_{7}.

Now we can define a translation $*$: where ϕ is a first-order formula whose only nonlogical primitive is R, let ϕ^{*} be the result of first restricting all of ϕ 's quantifiers to Old, and then replacing any subformula of the form $R(x, y)$ with $R^{*}(x, y)$. Then for any old nodes $a_{1}, \ldots, a_{n}, R_{D} \models \phi\left(a_{1}, \ldots, a_{n}\right)$ iff $R_{G} \models \phi^{*}\left(a_{1}, \ldots, a_{n}\right)$.

This suggests a method for reducing the non-symmetric relation, R, to a symmetric relation: claim that R_{G} ' edge relation, E, is more basic than R, and that R is perspicuously analysed via R^{*}.

Generalize: Suppose that T fis only primitive is R. Then, with $*$ defined as above, let
$T_{\text {new }}$ be the graph theory whose axioms are exactly ϕ^{*}, for any T-axiom ϕ, plus an extra axiom which ensures that $T_{\text {new }}$ is a graph theory, i.e. " E is symmetric and irreflexive". It is now easy to show that $*$ is a faithful interpretation, in that: $T \vdash \phi$ iff $T_{\text {new }} \vdash \phi^{*}$, for any T-sentence ϕ. In other words, * is a faithful interpretation.

2 The Problem

The problem with the above strategy is that some R is unrestricted in the R_{D} sense, but is restricted in the R_{G} sense.

Theories T and T^{\prime} are synonymous iff there are interpretations $\eta: T \rightarrow T^{\prime}$ and β : $T^{\prime} \rightarrow T$ such that $T \vdash \phi \leftrightarrow \beta \eta \phi$ and $T^{\prime} \vdash \psi \leftrightarrow \beta \eta \psi$ for every T-formula ϕ and every S-formula ψ.

The theory of T and $T_{\text {new }}$ defined previously may not be synonymous. The problem we considered can be paraphrased as: $T_{\text {new }}$ interprets R as a restricted relation, R^{*}. The orthodox should be: no interesting theory is synonymous with any symmetric theory. Or, every interesting theory is unsymmetrizable.

A theory, T, is unsymmetrizable iff no symmetric theory is synonymous with T.

3 The Precise Idea

A theory, T, is graphable iff T is synonymous with some graph theory.

Button's refutation of the orthodoxy really comes down to this point: Vast swathes of mathematical theories are graphable.

Proposition 1. Let T be a first-order theory, with finitely many primitives, which directly interprets $A S_{e}$. Then T is graphable.

Note that Proposition 1 shows the following: Take any theory on the list just given, or just start with $A S_{e}$ itself. Next, enrich your chosen theory with some first-order axiomsfi?!as many as you like. If you want, you may formulate these axioms using new primitives, provided that you use only finitely many new primitives. Now: whatever you did, the resulting theory is graphable.

4 Pythagrapheanism

Assumption 1: Our favourite physical theory can be formulated so that it directly interprets $A S_{e}$.

Assumption 2: Our favourite physical theory uses only finitely many non-logical primitives.

The conclusion is that our favourite physical theory is graphable. So, our favourite physical theory is reducible to a graph theory. In sum: there is no formal impediment to the claim that you, me, and everyone we know are all just nodes in an enormous graph, and that all the various non-symmetric relations- Love, Hate, and everything else - reduce to that graphfis edge relation. Otherwise put: the orthodoxy is so wrong, that perhaps every relation reduces to a single, symmetric relation.

Limitation of this method: The construction of a graph theory $T_{\text {graph }}$ of a non-symmertical theory T involves certain arbitrary technical choices. There could be some equally good graph theories like $T_{\text {alt }}$ as an equally good candidate for being the fundamental theory.

