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1. Quantifier Variance

(QV) There are different candidate meanings for quantifiers.

For (QV) to be philosophically interesting, the candidate meanings QV is often used to motivate metaon-
tological deflationism: apparently
different ontological views are "say-
ing the same thing" in different ways.
That requires all relevant parties using
quantifiers in their language.

must be quantifier meanings: they must behave like quantifiers in infer-
ences.

*This is essentially saying that they follow the same set of inference
rules. Rules do not fully determine meaning.

2. Collapse Theorems of ∨

Collapse theorems claim that inference rules do determine meaning
(up to mutual entailment). Dorr ilustrates this by disjunction.

Theorem 1: We may prove a collapse theorem with respect to an
uninterpreted language S: let ∨1 and ∨2 be two syntactic objects that
follow the usual inference and elimination rules of ∨, then:

(1) ϕ1 ∨1 ϕ2 ⊢ ϕ1 ∨2 ϕ2 Proof for (1). ϕ1 ⊢ ϕ1 ∨2 ϕ2, ϕ2 ⊢
ϕ1 ∨2 ϕ2, Therefore, by ∨Elim of ∨1,
phi1 ∨1 ϕ2 ⊢ ϕ1 ∨2 ϕ2 Proof for (2) is
symmetric to (1).(2) ϕ1 ∨2 ϕ2 ⊢ ϕ1 ∨1 ϕ2

This shows that there is at most one symbol playing the inferential The syntactic proof above won’t help
block the possibility of semantic varia-
tion, because syntactic rules cannot be
applied across languages.

role of ∨ in a syntax. Now let there be two languages L1 and L2. By
Theorem 1, each language contains just one symbol for ∨.

But this is not yet an argument for the claim that "∨" has the same
meaning in languages L1 and L2, both with the same syntax! The
obstacle is that we cannot directly use inference rules on a formula in When ϕ1 and ϕ2 are formulas in L1, the

only relevant inferential rule is ∨1-intro,
so we cannot get any meaningful claim
about ∨2.

another language.

Local vs. Global rule-following: to address the difficulty we
need to define rule-following on the level of propositions . The "local" Propositions are the semantic values of

syntactic structures/sentences, so they
transcend specific languages.

definition (p. 509) captures the inferential behavior or ∨ on propo-
sitions that are expressible in the relevant languages. The "global"
definition (p. 511) defines the inferential pattern on all propositions.
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Theorem 2: If L1 and L2 have the same expressive power (up to The intuition of this "local" version of
Collapse is that with the help of ex-
pressive equivalence, we can "translate"
between equivalent sentences in the two
languages, and then run the proof for
(1) after proper translation.

mutual entailment), then for any sentences ϕ1, ψ1 in L1 and phi2, psi2
in L2, if ϕ1 is equivalent to ψ1 and ϕ2 is equivalent to ψ2 then ϕ1 ∨1 ψ1

is equivalent to ϕ2 ∨2 ψ2.

Theorem 3: If F(p, q) and G(p, q) are both the least upper bound of The intuition for the "global" version:
regardless of whether a proposition is
expressed (and expressed in whatever
form) in a syntax, we may directly
define inferential rules on propositions,
and those rules determine uniquely the
meaning of "disjunction".

propositions p and q, then F(p, q) = G(p, q)

We may use Theorem 3 to argue that the meaning of ∨ does not vary
across languages.

Possible response: Dorr mentions that the only way to block The- Here is what I take to be going on.
Let "entail" pick out relation R1 in
language L1 but R2 in L2, then when
L1 speakers say "F(p, q) entails r" they
mean R1 while L2 speakers will mean
R2. Now, we may rigidify "entail"
to mean whatever we mean, say R2,
and check whether their quantifiers
satisfy the relevant "global" inferential
properties defined in terms of R2. But
then whether the L1 speakers take a
sentence to be entailed by some other
sentence provides no evidence whether
that sentence is "really" entailed, in
terms of R2 by the other sentence.

orem 3 is to argue that the notion of entailment varies across lan-
guages (which means that the "Global" inferential properties we
defined are in fact not univocal.)

I will skip the "Tarskian" variation for ∨ rules (section 3.5 in the
paper) because I (and Dorr) consider that as a distraction. If we may
define connectives directly on propositions themselves then we don’t
need to have a heavy weight notion of combined language within
which we run the syntactic Collapse argument (like that for (1)).

3. Collapse Theorems of Quantifiers on Closed Sentences

Define the entailment relation on the semantic values of closed sen-
tences, and we may have the "local" (p. 522) vs. "global" (p. 529) ver-
sions of the inference rules concerning ∃. As before, local inference
rules are defined on propositions expressed by sentences, and global
inference rules are defined directly on all propositions.

The local version of collapse

Local inference rules are like the regular inference rules in logic text-
books (p. 522)

Theorem 4: If L1 and L2 has a name-mapping such that for every The intuition for name mapping: we
can translate between L1 and L2, and
the translation preserves names.

sentence ϕ1 in L1 there is a sentence ϕ2 in L2 equivalent to ϕ1, and
the names in ϕ2 are the images of names in ϕ1 via the mapping and
vice versa, then if ϕ1 in L1 is equivalent with ϕ2 in L2, their existential Proof. Suppose ϕ1 is equivalent to

ϕ2, by the local introduction rule of
∃1, ϕ1 |= ∃1x1ϕ∗

1 . by equivalence
between L1 and L2 there is a sentence
ψ in L2 that is equivalent to ∃1x1ϕ∗

1 ,
and ψ does not contain the image of
the relevant constant that was in the
place of x1 in ϕ1. Now, because ϕ2
and ϕ1 are equivalent, ϕ2 |= ψ, and ψ
does not contain the relevant "image"
constant. Then by elimination rule of
∃2, ∃2x2ϕ∗

2 |= ψ, and ψ is equivalent to
∃1x1ϕ∗

1 The converse is parallel.

closure are equivalent too.

Two problems about Theorem 4: First, it relies on name map-
ping but quantifier variantists may claim that different languages
have different stocks of names (those who apparently quantify over
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more things will also have more names in their language). Second,
it is not clear that our language satisfies the local introduction and
elimination rules in full generality.

Problems with local introduction of ∃ (A) empty names (if
a is empty then ϕ(a) does not entail ∃xϕ(x)). (B)) contingentism
(∀x(x ̸= a) is contingently false, but ∃y∀x(x ̸= y) is necessarily
false. So ∃-elimination makes a contingently false proposition entail
a necessarily false proposition, but this cannot hold if entailment is
metaphysical necessitation).

The best shot for Theorem 4: we apply Theorem 4 not to ∃ but The intuition: the possibilist existential
quantifier quantifies over all possibilia
including those that are not actual.

to ∃⋄ where ∃⋄ is the possibilist quantifier, this will block problem
B. Moreover , for the quantifier variantists, difference in the mean- The example of being huge on p. 526:

let "something is huge" be false under
one quantifier meaning but true under
another quantifier meaning, then
"possibly something is huge" could be
false under one quantifier meaning but
true under another meaning

ing of ∃ will typically result in difference in the meaning of ∃⋄ , but
Theorem 4 will preclude any meaning variation on ∃⋄ .

Problems with local elimination of ∃ If entailment is meta-
physical necessitation, then "Hesphorus is a gas giant" enatils "Phos-
phorus is a gas giant" but ∃xG(x) does not. . Note that in "Phosphorus is a gas giant"

there is no occurrence of "Hesphorus",
so we may run ∃-Elim.

Dilemma: To save ∃-Elim we may consider a super fine-grained
notion of propositions and a Tarskian notion of entailment under
which "Hesphorus is a gas giant" does not entail "Phosphorus is a
gas giant" (because there are Tarskian permutations that changes the
reference of "Phosphorus" but not "Hesphorus"). This move blocks
the counterexample. But simultaneously it makes Theorem 4 useless
because in this super-fine-grained conception the idea of expressive
equivalence is super demanding, and it is unlikely that quantifier
variantists will endorse it.

The global version of collapse

In the global version of collapse we must define the inferential rules To avoid puzzles about identity, we
need to define a notion of aboutness
under which qualitative concepts are
not about any particular object

of quantifiers directly on the level of propositions/semantic values.
The natural thought is that quantifiers are functions from concepts
(the semantic values of predicates) to propositions.

Global ∃-Elim: If proposition p predicates concept c of some object
and c is not about that object, p |= F(c)

Global ∃-Elim: If proposition p predicates a concept c of some
object and entails some proposition that is not about that object then The intuitive thought: which object it is

won’t matter.F(c) |= q
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Theorem 5: If F and G both follow the Global inference rules, and Proof. Let x be some object that c is
not about, and let q be the proposition
that attributes c to x. By Introduction,
q entails G(c), and it is not about x. q
is the result of removing F from F(c),
so by elimination rule F(c) entails G(c).
The converse is parallel.

c is a concept not about every object, then F(c) and G(c) are equiva-
lent.

Objection 1 (Sider): Theorem 5 assumes that there is a common
stock of concepts across languages, but that is implausible. Appar-
ently different ontological views will result in different stocks of
concepts and objects across languages.

Response (Dorr): This is radical, and also unmotivated, because t The obvious response from Sider or a
quantifier variantist is that differences
in predicate meaning are explained by
differences in quantifier meaning

undercuts the motivation for QV–why not attribute meaning varia-
tions to predicates?

Objection 2 (Dorr): Even if we grant that all languages have a A simplistic way to think about this:
Theorem 5 not only assumes a common
stock of concepts but also a common
stock of objects. But if QV is true
then the notion of objecthood must be
revised too.

common stock of concepts, the quantifier variantist can still deny
that the quantifiers all have the global inferential properties. Note
that the properties are themselves defined by quantification over ob-
jects, but it is question-begging to assume that all languages quantify
over objects in the same way. If each language has its own quantifier
meaning, then in each language the clauses for ∃-Elim and ∃Intro
will pick out different properties too. This is just like Dorr’s putative
response to the collapse argument of ∨.

Dorr’s response carries over to "Tarskian" variations of the Collapse
argument if the notion of a legitimate variant involves quantifica-
tion over objects. And it is not clear how to define Tarskian variants
otherwise.

Collapse Theorems of ∃ in Open Sentences

Tentative thought: open sentences express propositions relative to
variable assignments, so we may define inferential rules relative to
variable assignments.

Problem: Analogous to the Objection 2 to Theorem 5, there is no
guarantee that different quantified languages will quantify over vari-
able assignments using the same quantifier meaning (which tacitly
involves quantification over objects in the domain), so the notion we
use to define the relevant inferential properties may fail to be univo-
cal.

Suggestion of Dorr: take open sentences to be something like
predicates, and directly define entailment relations on concepts. The appeal is that we can avoid any

explicit or implicit quantification over
objects or variable assignments.
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