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1 The Automorphism Approach

SYM* A mathematical object X has more structure than a mathematical object
Y iff Aut(X) ⊊ Aut(Y ).

By mathematical objects, we mean mathematical structures. Aut(X) is the set
of all automorphisms of X .

1.1 Arguments for the Automorphism Approach

1.1.1 The Argument From Examples

Consider, for example, automorphisms of a topological space and automorphisms
of its underlying set. The automorphism approach clearly captures out intuition
about this example.

1.1.2 The Argument From Size

Automorphisms are structure-preserving. Aut(X) ⊊ Aut(Y ) thus suggests that
X has more structures than Y . This is because the more structures a mathemat-
ical object has, the harder for a map to be automorphic— more structures have
to be preserved by a map.
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1.1.3 The Argument From Definability

A natural way to interpret ‘X has more structures than Y ’ is the following:

DesideratumX has more structure than Y iffX can define all of the structures
that Y has, but X has some piece of structure that Y does not define.

The formal setup for this argument consists two signature Σ1 and Σ2. Assume
that Σ1-structureA and Σ2-structureB have the same underlying set. The ‘basic
structures’ of A and B can be thought of as represented by elements of Σ1 and
Σ2 respectively. This setup is intuitive given that the objects we tried to compare
are mathematical structures (e.g. a topological space and its underlying set). A
notational setup is to denote that a sequence of elements a1, . . . , an ∈ A satisfy
φ(x1, . . . , xn) as A |= φ[a1, . . . , an].

Definition 1. (Explicit Definition) A Σ1-structure A explicitly defines pB if there
is a Σ1-formula φ such that φA = pB .

Definition 2. (Implicit Definition) AΣ1-structureA implicitly defines pB ifh[pB] =
pB for every automorphism of A.

Explicit definitions show that every structure B has can be constructed from or
is an abbreviation of φA— a piece of structure that A has.

To say that A implicit defines pB is to claim that pB is ‘invariant under’ or ‘pre-
served by’ the symmetries ofA. Since symmetries reveal the invariant structures,
pB is thus a piece of structure of A

Proposition 1. The following are equivalent:

1. For every symbol p ∈ Σ2, A implicitly defines pB , but there is a q ∈ Σ1 such that
B does not implicitly define qA.

2. Aut(A) ⊊ Aut(B).

Proof. For every h ∈ Aut(A), h[pB] = pB for every p ∈ Σ2, then h is also an
automorphism of B since it respects all p ∈ Σ2. Since there is a f ∈ Aut(B)
such that f [qA] ∕= qA for some q ∈ Σ1, f /∈ Aut(A)

Since every h ∈ Aut(A) is also in Aut(B), h[pB] = pB . Let f ∈ Aut(B) \
Aut(A). Since f /∈ Aut(A), there is a q ∈ Σ1 such that f(qA) ∕= qA.
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N.B.The proof relies on the fact thatA andB have the same underlying set. Also,
h(〈a1, . . . , an〉) = 〈h(a1), . . . , h(an)〉.

Proposition 1 shows that the automorphism approach satisfies Desideratum
when Desideratum is interpreted by the implicit definition.

1.2 Problems

1.2.1 Sensitivity

SYM* cannot deal with objects with different underlying sets. For example, a
topological space (X, τ) and a set Y such that X ∕= Y .

1.2.2 Triviality

SYM* is implausible when considering objects whose automorphism is the iden-
tity map (i.e. has a trivial automorphism group).

Consider the following example: Let Σ1 = {c1, c2, . . . } containing countably
infinite constants. Let Σ2 = Σ1 ∪ {p}, where p is a unary predicate symbol. We
let Σ1-structure and Σ2-structure A and B both have the domain {0, 1, 2, . . . }
and let cAi = cBi = i for each i. But the only automorphism of A is the identity
map. So it cannot be the case thatAut(B) is a proper subset ofAut(A) although
B has more structures than A in some sense.

2 The Category Approach

Definition 3. A functor F : C → D is full if for all c1, c2 in C and arrow
g;Fc1 → Fc2 in D , there exists an arrow f : c1 → c2 in C with Ff = g.

In other words, for all c1, c2 in C , Farrow : HomC (c1, c2) → HomD(Fc1, F c2) is
surjective.

Definition 4. (Structure-Forgetful Functor) F forgets structure if F is not full.
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Note the difference between functors which forgets structures and properties.
For example, the inclusion functor Ab → Grp, which is fully faithful, forgets
properties but not structure, whereas Ab → Set forgets structures.

To apply the categorial method to first-order theories, we need the categories of
first-order theories.

Definition 5. (Elementary Embedding) IfΣ is a signature andM,N areΣ-structures,
then an elementary embedding f : M → N is a function from M to N such that
M ⊨ φ[a1, . . . , an] iff N ⊨ φ[f(a1), . . . , f(an)] for any first-order formula φ.

Definition 6. Mod(T ) is category whose objects are models of T and whose arrows
are elementary embeddings between two such models.

2.1 Arguments for the Category Approach

2.1.1 The Argument From Examples

Consider, for example, the functor from Top to Set.

2.1.2 The Argument From Size

Consider, again, the functor U : Top → Set. Since U is not full, some arrows
in Set are ‘forgotten’ by U . So there are more set functions than continuous
maps. Since there are more structure-preserving maps between sets than be-
tween topological spaces, Set must have less structure to be preserved by these
maps.

The essential idea of The Category Approach is the same as SYM*: ‘a larger
collection of arrows in a category should indicate that the objects in the category
have less structure.’

An interesting case to consider: A functor F : C × D → C . More specifically,
consider the category 1, which contains only one object (call it •) and only the
identity arrow. Consider the functorG : Set× 1 → Set. We can think of Set× 1
as consisting of objects 〈a, •〉 (a is a set) and arrows 〈f, 1•〉 (f is a set function)
which is uniquely determined by f and 1•. It seems that one might feel thatG is
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also forgetful in some sense. Since • isn’t defined on any sets, what we want to
talk about seems really to be a mathematical structure rather than an object like
a pair of the form 〈a, •〉.

Disclaimer: I think that this point has been more detailed discussed in Baez, J.,
Bartels, T., Dolan, J., & Corfield, D. (2006). Property, Structure and Stuff, which I
haven’t read.

2.1.3 The Argument From Definability

To argue for the Category Approach from definability, we aim for a revised ver-
sion of Desideratum:

A structure-forgetful functor F : Mod(T2) → Mod(T1) indicates that T2 defines
all of the structures of T1, but T1 posits some piece of structure that T1 does not
define.

Formal Setup:

Definition 7. (Reconstrual) A reconstrual F of (a signature) Σ1 into (a signature)
Σ2 is map from the elements of Σ1 to Σ2-formulas that take an n-ary predicate
symbol p ∈ Σ1 to a Σ2-formula Fp(x1, . . . , xn).

A reconstrual can be extended to a map from Σ1-formulas to Σ2-formulas in a
natural way: we define the Σ2-formula Fφ(x1, . . . , xn) as follows.

1. If φ(x1, . . . , xn) is xi = xj , then Fφ(x1, . . . , xn) is the Σ2-formula x1 =
xj .

2. If φ(x1, . . . , xn) is p(x1, . . . , xn), then Fφ(x1, . . . , xn) is Fp(x1, . . . , xn).

3. F commutes with Boolean connectives and quantifiers.

We still cll themap between fromΣ1-formulas toΣ2-formulas ‘reconstrual’.
Definition 8. (Translation) Let T1 and T2 be theories in Σ1 and Σ2 respectively, a
reconstrual F ;Σ1 → Σ2 is a translation F : T1 → T2 if

T1 |= φ ⇒ T2 |= Fφ

.
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A translationF gives rise to amapF ∗ : Mod(T2) → Mod(T1). We can construct
our functor F ∗ in the following way: For every model A of T2 we define F ∗(A)
as follows:

1. dom(F ∗(A)) = dom(A).

2.(a1, . . . , an) ∈ pF
∗(A) iff A |= Fp[a1, . . . , an].

3. Obvious mappings on elementary embeddings.

Then one can show that
Lemma 1. Let M be a model of T2 and φ(x1, . . . , xn) a Σ1-formula. Then M |=
Fφ[a1, . . . , an] iff F ∗(M) |= φ[a1, . . . , an].

Definition 9. (Essentially Surjective) A translation F : T1 → T2 is essentially
surjective if for every Σ2-formula ψ there is a Σ1-formula φ such that

T2 |= ∀x1 . . . ∀xn(ψ(x1, . . . , xn) ↔ Fφ(x1, . . . , xn))

The existence of eso translation F : T1 → T2 captures in a sense in which T1

can define all the structures of T2, since any formula ψ in the language of T2

is expressible using the language of T1. The eso of F guarantees that there is
some formula φ in the language of T1 that translates to (a logical equivalent of)
ψ.

Assuming that Σ1 an Sigma2 contain only predicate symbols and are disjoint,
we have
Proposition 2. Let F be a translation F : T1 → T2. The following are equivalent:

1. F is essentially surjective.

2. F ∗ : Mod(T2) → Mod(T1) is full.

This proposition satisfies our revised desideratum: Suppose that F ∗ is not full.
(1) Since F ∗ is induced by a translation F : T1 → T2, there is a sense in which T2

can define all of the structures of T1. For each piece of structure p that T1 posits,
T2 posits Fp, and we can therefore use this piece of structure to define p. So T2

defines all of the structure of T1. (2) Since F ∗ is not full, Proposition 2 guarantees
that F is eso, and so there is a formula ψ in the language of T2— in other words,
a piece of structure that T2 posits— for which there is no corresponding piece
of structure φ posited by T1 that F translates to ψ. This means that T1 does not
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define all of the structures of T2 But if F ∗ is full, T1 does define all of the structure
of T2.

2.2 Problems

2.2.1 Sensitivity and Triviality

Sensitivity is clearly avoided. Consider the example we considered previous
about triviality. The Category Approach offers a correct verdict.

Let Th(B) be the Σ1∪{p}-theory that has as axioms every Σ1∪{p}-sentence φ
such that B |= φ, and let Th(A) be the Σ1-theory that has as axioms every Σ1-
sentence ψ such that A |= ψ. Consider the translation F : Th(A) → Th(B) de-
fined byF : ci +→ ci for every ci ∈ Σ. It’s clear thatF is a translation since ifA |=
φ, then B |= φ. But since it cannot be the case that Th(B) |= ∀x(φ(x) ↔ p(x)),
F is not eso. According to Proposition 2, F ∗ : Mod(Th(B)) → Mod(Th(A)) is
not full.

2.2.2 Relativization to the Functor

There are usually many functors between two categories, but our category ap-
proach depends on the choice of functors.

Consider Σ1 = {p, q} and Σ2 = {r, s}, where all these symbols are unary. Let
Σ1-theory T1 and Σ2-theory T2 be empty theories. Consider the following three
translations:

F : p +→ r, q +→ s

G : p +→ r, q +→ r

H : r +→ p, s +→ p

F is eso, G and H are not. So F ∗ is full but G and H are not. Which func-
tor/translation should we pick? As Barrett claims, it is often easy to choose a
functor between physical theories. But what about other cases? One might be
tempted to say that we should choose the most ‘charitable’ one in the example
above. But how far can we go with this?
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3 Two Payoffs

3.1 Excising A Piece of Structure?

Let Σ = {p, r} and T be a Σ-theory with the one axiom ∀x(r(x) ↔ p(x, x)).
Consider the {p}-theory T− with no axioms. It seems that p is excised since it
doesn’t even appear in any sentences T− entails. But it seems that no structures
are excised since r is definable from p (especially if we think that symmetry
tells us the structure of a theory). It is easy to check that M of T has the same
automorphism group asM |{p} of T−. If we consider F : T− → T that maps p to
itself, then it is also easy to check that it is eso. Proposition 2 therefore says that
these theories have the same structures.

The moral to be drawn here is that excising a piece of structure is not just re-
formulating the theory in such a way that the piece of structure is no longer
explicitly appealed to.

3.1.1 Equivalence

The fact that two theories explicitly appeal to different collections of structures
in their formulations does not imply that they are inequivalent.
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