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1. Krämer’s puzzle

Let’s start with a second-order propositional language L:

p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ϕ ↔ ψ | ∀pϕ | ∃qψ | ϕ ≺ ψ

We use ≺ for partial ground.1 L is equipped with some axioms of 1 According to Kit Fine’s terminologies
([REF]), this notion of ground is also
factive, mediate and strict.

classical quantification theory and the inferential rule modus ponens:

PC All theorems of propositional calculus;

UI ∀pϕ → ϕ[ψ/p], where ψ is free for p in ϕ;

Dual ∀p¬ϕ ↔ ¬∃pϕ;

mp Infer ψ from ϕ → ψ and ϕ.

A conventional wisdom: true generalizations are partially grounded
in their true instances. This conventional wisdom can be regimented
in L as follows:

(1) ∀p(ϕ → ϕ ≺ ∃pϕ);

(2) ∀pϕ → ∀p(ϕ ≺ ∀pϕ).

But given our logic, (1) is unfortunately inconsistent with another
tenet for most grounding theorists: no proposition grounds itself!2 2 Proof: By Dual, (3) amounts to

∀p¬(p ≺ p), which by UI implies
¬(∃p p ≺ ∃p p). Applying UI to (1) also
gives us ∃p p → ∃p p ≺ ∃p p: ∃p p is
just p[∃p p/p]. Note that the truth of UI
and Dual guarantees ∃p p, and therefore
∃p p ≺ ∃p p. A contradiction.

(3) ¬∃p(p ≺ p).

This is Krämer’s puzzle ([REF]), a higher-order variant of a notorious
puzzle firstly introduced in Fine [REF]. To solve this puzzle, it seems
we have to reject at least one principle mentioned above, either a
logical one or a ground-theoretical one.3 But which one? 3 A similar logical conflict between

(2) and (3) will arise against some
additional principle of grounding.

2. Fritz’s puzzle

Let’s consider a richer language L+: it also includes variables X, Y, Z, . . .
of sentential operators and the corresponding quantifiers ∀X, ∃X, ∀Y, ∃Y,
∀Z, ∃Z, . . . , plus two additional binary connectives ≺i and = for im-
mediate partial ground and propositional identity respectively. A new
puzzle, i.e., Fritz’s puzzle, that has nothing to do with the irreflxivity
of grounding, can be raised in this language with a stronger logic,
containing three more axioms and closed under one more rule:
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Ref ϕ = ϕ;

LL ϕ = ψ → χ[ϕ/p] → χ[ψ/p], where both ϕ and ψ are free for p in
χ;

Com ∃X∀p(Xp ↔ ϕ), where X is not free in ϕ;

Gen Infer ϕ → ∀xϕ from ϕ → ψ, provided x (a propositional or
operational variable) is not free in ϕ.

The conventional wisdom concerning the interactions between
grounding and generalizations might be naturally strengthened as
follows: a partial ground of a true generalization is either a true
instance of this generalization or a partial ground of some true in-
stance(s) of this generalization. Similar principles are suggested for
conjunction and disjunction. For example in the former case, a partial
ground of a true conjunctive proposition is either a conjunct of this
proposition or a partial ground of some conjunct(s) of this proposi-
tion. These principles can be captured by the notion of immediate
partial grounding and precisely regimented in our current language:4 4 ◦ ∈ {∧,∨}.

I omit the principles for propositional
universal quantifiers since we don’t
need them in the following argument;
but like the case of Krämer’s puzzle,
they are troublesome too. (I also omit
principles for operational quantifiers.)

Alternatively, if we’re willing to ac-
cept that there are ungrounded truths,
we don’t even need the principles for
disjunction.

(4) ∀p(ϕ → ϕ ≺i ∃pϕ);

(5) ∀q(q ≺i ∃pϕ → ∃p(q = ϕ));

(6) ∀pq(p ◦ q → p ≺i (p ◦ q) ◦ q ≺i (p ◦ q));

(7) ∀pqr(r ≺i (p ◦ q) → r = p ∨ r = q).

With principles (6) and (7), two connectives ∧̂ and ∨̂ can be defined
so that the following principles turn out to be deducible:5 5 Here are the definitions: suppose there

are at least two truths A and B, then
ϕ ∧̂ψ := ((A ∧ B) ∧ ϕ) ∧ ((A ∧ A) ∧ ψ)
and ϕ ∨̂ψ := ((A ∧ B) ∧ ϕ) ∨ ((A ∧
A) ∧ ψ). The inference for (10) and (11)
below will be a little tedious but not
very hard.

The assumption that there is more
than one truth is very modest; other-
wise, either all truths ground all truths
or all truths ground no truths.

(8) ∀pq(p ∧̂ q ↔ p ∧ q);

(9) ∀pq(p ∨̂ q ↔ p ∨ q);

(10) ∀pqp′q′(p ∧ q ∧ (p ∧̂ q) = (p′ ∧̂ q′) → p = p′ ∧ q = q′);

(11) ∀pqp′q′((p ∨̂ q) = (p′ ∨̂ q′) → (p ∧ ¬q → p = p′) ∧ (¬p ∧ q →
q = q′)).

Then consider two factive operations X and Y.6 We suppose that 6 An operation X is factive just in case
∀p(Xp → p).∃p(p ∧̂ (Xp ∨̂ ¬Xp)) = ∃p(p ∧̂ (Yp ∨̂ ¬Yp)). For each p, if Xp,

p ∧̂ (Xp ∨̂ ¬Xp) is true by (8) and (9). Given (4), it is an immediate
partial ground of ∃p(p ∧̂ (Xp ∨̂ ¬Xp)), so by LL and (5), it is identical
to q ∧̂ (Yq ∨̂ ¬Yq) for some q. Then, according to (8)-(11), p = q and
Xp = Yq, which means Yp. The converse direction can be proved in
the same way. Thus we have:7 7 We use Φ(X) to abbreviate ∀p(Xp →

p), Ψ(X) to abbreviate ∃p(p ∧̂ (Xp ∧
¬Xp)), and X ≡ Y to abbreviate
∀p(Xp ↔ Yp).

(12) ∀XY(Φ(X) ∧ Φ(Y) ∧ Ψ(X) = Ψ(Y) → X ≡ Y).
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This looks like a principle of structurism. Indeed, there exists a
Russel-Myhill argument for the inconsistency of (12) within the logic
we embrace now. This argument will rely on Ref, Com and Gen.8 So 8 I leave the proof as an exercise. (Hint:

consider p ∧ ∃Y(Φ(Y) ∧ p = Ψ(Y) ∧
¬Yp).)

Firtz presents this puzzle in a plural
logic and the principles he employs in
the Russell-Myhill argument includes
plural comprehension: ∃pp∀p(p ϵ pp ↔
ϕ). Boris Kment ([REF]) recently argues
that some plausible principles of
grounding provide us natural reason
to reject plural comprehension. Thus
the original version of Firtz’s argument
might be blocked. However, as Kment
himself concedes, these principles fail to
provide us natural reason to reject Com.

the basic idea behind Fritz’s puzzle is that if grounding performs so
and so, as most friends of grounding expect, then reality will become
too fine-grained to be consistent.

3. Fritz’s solution

Ironically, Fritz ([REF]) himself puts forward a promising solution
to Krämer’s puzzle as well as his own one. This time, let’s work
in a higher-order language J : we have singular terms—terms of
type e; for any sequence of types ⟨σ1, . . . , σn⟩, we have predicates
of type ⟨σ1, . . . , σn⟩ and we may call predicates of type ⟨⟩ formulae.
For each type σ, there are countably many variables x1, x2, . . . and
some (perhaps zero) constants c1, c2, . . . of this type. If M is of type
⟨σ1, . . . , σn⟩ and N1, . . . , Nn are of types σ1, . . . , σn, then (MN1 . . . Nn)

is a formula. Finally, if ϕ is a formula and x1, . . . , xn are pair-wise
distinct variables of types σ1, . . . , σn, then (λx1 . . . xn.ϕ) is a predicate
of type ⟨σ1, . . . , σn⟩.9 9 We may sometimes omit brackets

when the context is clear enough.In this language, all logical terms are treated as predicates: ¬
is of type ⟨⟨⟩⟩ and binary connectives like ≺ are of type ⟨⟨⟩, ⟨⟩⟩.10 10 For readability, we still write ϕ ≺ ψ

instead of ≺ϕψ.More significantly, for each σ, we have quantifiers ∀σ and ∃σ of type
⟨⟨σ⟩⟩. So ∃σ, for instance, combines predicates F of type ⟨σ⟩ to form
formulae ∃σF, and every formula of the form ∃σxϕ is merely an
abbreviation of ∃σ(λx.ϕ) where λx.ϕ is of type ⟨σ⟩. What’s more, for
each σ there is a =σ of type ⟨σ, σ⟩, defined as λxy.∀⟨σ⟩X(Xx → Xy).11 11 We may sometimes omit the sub-

scripts of quantifiers or identity signs
when the context is clear enough.

Here’s the smallest classical logic governing J :12

12 Ref, LL and Com now become theo-
rems of this logic.

Here’s a proof of a general version of
Com (∃X∀x1 . . . xn(Xx1 . . . xn ↔ ϕ)):
Let x̄ be x1 . . . xn. (λx̄.ϕ)x̄ ↔ ϕ is an
instance of βE. By βE and Gen we get
∀x̄((λx̄.ϕ)x̄ ↔ ϕ). Since X is not free in
ϕ, βE and EG give us ∃X∀x̄(Xx̄ ↔ ϕ).

PC All theorems of propositional calculus;

UI ∀F → Fa;

EG Fa → ∃F;

βE (λx1 . . . xn.ϕ)N1 . . . Nn ↔ ϕ[Ni/xi], where each Ni is free for the
corresponding xi in ϕ;

mp Infer ψ from ϕ → ψ;

Gen Infer ϕ → ∀F from ϕ → Fx, provided x is not free in ϕ;

Inst Infer ∃F → ϕ from Fx → ϕ, provided x is not free in ϕ.

In J , the conventional wisdom that true generalizations are
grounded in their true instances should be reformulated:

(13) ∀X∀x(Xx → Xx ≺ ∃X);



goodman, grounding, and generalizations 4

(14) ∀X(∀X → ∀x(Xx ≺ ∀X)).

Note that (13) is not (1). To get (1) from (13) and trigger the previous
argument, we need an auxiliary principle:13 13 In fact, (λp.ϕ)ψ = ϕ[ψ/p] will be

enough.
Proof: An instance of (13) is

(λp.ϕ)p → (λp.ϕ)p ≺ ∃pϕ. So by using
β= twice, we can get ϕ → ϕ ≺ ∃pϕ,
with the help of LL. Then UI and β=

will give us its universal closure.

β= (λx1 . . . xn.ϕ)N1 . . . Nn = ϕ[Ni/xi].

Alternatively, if true λ-applications are always grounded in their
β-reductions and if grounding is transitive, (13) entails (1):

βG ϕ[Ni/xi] → ϕ[Ni/xi] ≺ (λx1 . . . xn.ϕ)N1 . . . Nn;

Tr ∀pqr(p ≺ q ∧ q ≺ r → p ≺ r).

But why should we accept β= or βG? It seems rejecting them is a
relatively easier option for those grounding theorists—at least easier
than rejecting other logical or ground-theoretical principles.14 14 Firtz’s puzzle can be solved in a

similar way. With neither β= nor βG, it
is not clear whether p ∧̂ (Xp ∨̂ ¬Xp) is
still a ground, immediate or mediate, of
∃(λp.(p ∧̂ (Xp ∨̂ ¬Xp))).

The lesson: By adopting a more expressive language of meta-
physics, we are committed to more structures in reality. Once some
originally intertwisted structures are disentangled, more theoretical
options may turn out to be accessible.15 15 We originally recognized one struc-

ture of quantification. But in the higher-
order setting, we have a somehow
different structure of quantification
(now it becomes a specific case of the
structure of predication) as well as a
structure of λ-abstraction.

But questions remain:

Q1 Could we end up with a consistent picture if we merely reject β=

and βG?

Q2 Do we have sufficient philosophical reasons to reject them?

Jeremy Goodman ([REF]) does give an affirmative answer to the first
question and tries to give an affirmative answer to the second. In
what follows, we will reconstruct his first answer and evaluate his
second answer.

4. The hierarchy of propositions

We start with an abstract mathematical structure (S, c, d): S is a non-
empty set and c, d are two objects not in S. We then build a series of
models as follows:

• P0 = S;

• Pα+1 = P0 ∪ {{c} ∪ X : X ⊆ Pα} ∪ {{d} ∪ X : X ⊆ Pα};

• Pα =
⋃

β<α Pβ if α is a limit ordinal.

The most basic ideas behind nearly all pictures developed by Good-
man:

• Propositions are isomorphic to Pγ for some limit ordinal γ;16 16 We will encounter a different model
in §?.

• c corresponds to the structure of conjunction and d corresponds to
the structure of disjunction.
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Such a Pγ is in essence an algebra. The remaining task is to coher-
ently ‘embed’ other structures of reality (predication, λ-abstraction,
partial grounding, etc.) in this algebraic structure, keeping the va-
lidity of those logical and ground-theoretical principles at the same
time.17 17 It might be helpful to think about

Classicism. The idea is similar: propo-
sitions form a Boolean algebra under
truth-functional operations, and other
structures can be coherently ‘embed-
ded’ in it.

Before we turn to more concrete pictures, we need an important
notion—the levels of propositions. Suppose i is the isomorphism from
propositions to Pγ. For each proposition ϕ, the level of ϕ, l(ϕ), is
α (< γ) if i(ϕ) ∈ Pα and i(p) /∈ Pα−1.18

18 Since no ordinal is less than 0, all i(ϕ)
are not in P0−1.

5. Goodman’s first picture

We assign a unique rank to each type:

• If σ is not monadic, r(σ) = ασ for some ασ;

• r(⟨σ⟩) = r(σ) + α⟨σ⟩ for some α⟨σ⟩ ≥ 1.

Then the general structure of predication is subject to the following
constraint:

(⋆) If F is a property of type ⟨σ⟩ and a is an entity of type σ, then
l(Fa) ≤ r(σ); in particular, when F = λx.ϕ,

(λx.ϕ)a =

ϕ[a/x] if l(ϕ[a/x]) ≤ r(σ)

ϕ∗ where □(ϕ∗ ↔ ϕ) and l(ϕ∗) ≤ r(σ) otherwise

□ is the broadest necessity. Here, we may define it as λp.((λq.q)p =

(λq.q)(p → p)). Given Goodman’s model theory, it is an S5 opera-
tion.19 19 Some audiences may feel if we define

□ in terms of λ, (⋆) is circular. But (⋆)
is just a constraint, not a definition.
The legitimate question is whether
this constraint can be satisfied. And
Goodman shows it can.

We also need some more specific embeddings (recall the isomor-
phism i):

• i(ϕ ∧ ψ) = {c, i(ϕ), i(ψ)};

• i(ϕ ∨ ψ) = {d, i(ϕ), i(ψ)};

• i(ϕ ≺ ψ) = {d} ∪ {{c, r1, ..., rn} : i(ϕ) = r1 ∈ ... ∈ rn = i(ψ) ̸= i(ϕ)};

• i(∀σF) = {c} ∪ {i(Fx) : for all x of type σ};

• i(∃σF) = {d} ∪ {i(Fx) : for all x of type σ}.

Now, let’s turn back to Krämer’s puzzle. Recall that ∃p p is just
an abbreviation of ∃(λp.p). i((λp.p)∃(λp.p)) ∈ i(∃(λp.p)) and
therefore the level of ∃(λp.p) is strictly greater than the level of
(λp.p)∃(λp.p)—this is allowed according to (⋆): the rank of ∃ is
strictly greater than λp.p. Thus, two consequences: one, (λp.p)∃(λp.p)
is an (immediate) partial ground of ∃(λp.p); two, both β= and βG are

Christopher Hutchinson
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false. It is not hard to verify that (3), (13), (14), and the logic of J
hold in this picture. So Q1 is answered. And Q2 is transferred to
this question: do we have sufficient philosophical reason to accept
Goodman’s picture?20 20 In fact, most higher-order metaphysi-

cians, including Goodman himself
([REF]), tend to accept β=. The most
serious argument for β= I have ever
seen comes from Andrew Bacon. In
[REF], he argues that we have theoret-
ical pressure to pin down the meaning
of those λ-terms uniquely. The most
straightforward (and perhaps the most
natural) way to so is to adopt the prin-
ciple of βη-conversion which entails β=.
I point out in [REF] that it is possible
to develop a comprehensive theory
of grounding without β= (or βG), in
which the meaning of those λ-terms is
uniquely pinned down by other princi-
ples of granularity. It seems Goodman
has no similar resources in his theory.
However, I don’t think this is a compul-
sory requirement, especially for friends
of grounding. So I won’t say too much
about β= below.

Objections to (⋆)

Call a property or a relation F of type ⟨σ1, ..., σn⟩ bounded if there is an
α such that l(Fx1...xn) ≤ α for all x1, ..., xn of type σ1, ..., σn; a property
or a relation is unbounded if it is not bounded.

We consider three objections in turn:

(a) Negation

(b) The monadic/polyadic distinction

(c) The distribution of properties and relations

A revenge argument

In J , we have quantifiers for unary predicates. Someone may sug-
gest for each n > 0, we should also have some corresponding quanti-
fiers combining n-ary predicates to form formulae. If so, consider this
generalization of (13):

(15) ∀X⟨σ1,...,σn⟩∀xσ1
1 ...xσn

n (Xx1...xn → Xx1...xn ≺ ∃σ1,...,σn X).

Here’s an instance of (15):

(16) ∀X∀pq(Xpq → Xpq ≺ ∃⟨⟩,⟨⟩X).

But (16) is in conflict with the law that true conjunctions are partially
grounded in their conjuncts.21 21 Proof: Let ϕ be a truth. By UI, (16)

implies ϕ ∧ (∃⟨⟩,⟨⟩∧) → ϕ ∧ (∃⟨⟩,⟨⟩∧) ≺
∃⟨⟩,⟨⟩∧. Since there are true conjunc-
tions, ϕ ∧ (∃⟨⟩,⟨⟩∧) ≺ ∃⟨⟩,⟨⟩∧. But the
former should also be grounded in the
latter.

6. Revising the first picture

If we have quantifiers for polyadic predicates and similar principles
of grounding governing them, we need some revisions. Goodman
suggests a syncategorematic treatment of conjunction and disjunction.
And a similar strategy can be adopted for negation as well. So ¬, ∧
and ∨ are not predicates now; instead, they are untyped expressions
like λ, associated with certain rules of term-formation:

• If ϕ is of type ⟨⟩, then ¬ϕ is of type ⟨⟩;

• If ϕ and ψ are of type ⟨⟩, then ϕ ◦ ψ is of type ⟨⟩ (◦ ∈ {∧,∨}).

The puzzle in the end of the last section is solved.
I have one more suggestion. Recall the model Pγ of propositions.

Let γ > ω and r(σ) = ω if σ is non-monadic. Therefore, r(⟨σ⟩) > ω

for all σ. But let’s impose the following constraint:

Christopher Hutchinson
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(∗) If F is a property of type ⟨σ⟩, which is neither ∀ nor ∃ of the
same type, then for all x of type σ, l(Fx) ≤ ω.

According to this picture, the distribution of properties and relations
within level ω obeys no restrictions, and it seems we therefore re-
ceive enough degree of freedom to do systematic metaphysics with
a robust notion of grounding. Beyond ω, the remaining structure of
predication is just the structure of quantification—a relatively ‘bor-
ing’ structure. Such an additional ‘patch’ seems to be a reasonable
cost.

7. Some deeper problems?

Truth, knowledge, and belief

Consider the four principles below:

(T) ∀p(p → p ≺ T⌜p⌝);22 22 We can take ⌜·⌝ as a syncategorematic
expression like λ and truth-functional
connectives. Fine’s original puzzle relies
on (T) or something near enough.

(K) ∀x∀p(Kxp → p ≺ Kxp);

(B1) ∀x∀p(Kxp → p ≺ Bxp);

(B2) ∀x∀p∀e(has(x, e) ∧ that(e, p) ∧ know(e) → p ≺ has(x, e)).

If one of these principles turns out to be true, we can also run a re-
venge argument. However it seems a grounding theorist indeed has
good philosophical reasons to accept at least one of them.

Replies: (T) and (K) need to be revised. In the current setting, a
proposition and it’s being true may not be the same matter. I tend
to think it is propositional truth ((λp.p)p) that grounds sentential
truth (T⌜p⌝).23 And I also tend to think it is a proposition’s being 23 Goodman sharply points out given

a classical semantics for negation, (T)
implies the unrestricted T-schema:
∀p(T⌜p⌝ ↔ p), which is classically
inconsistent.

true, rather than the proposition itself, that partially constitutes the
proposition’s being known. So I suggest the correct principles are:24

24 Given βG, which we don’t have, (T)
and (K) are entailed by (T′) and (K′).

Goodman says:“the more p becomes
alienated from [(λp.p)p] in its ground-
ing behavior, the less plausible it is that
the latter as opposed to the former is
the appropriate ground of our knowl-
edge of the former” (p. 22). I don’t
know why.

(T′) ∀p(p → (λp.p)p ≺ T⌜p⌝);

(K′) ∀x∀p(Kxp → (λp.p)p ≺ Kxp).

(B1) and (B2) need to be revised too. To my understanding, it is the
true proposition p itself (or the corresponding fact) that ‘grounds’
Bxp according to B1 and has(x, e) according to B2. But here, the con-
nection at issue is more probably a causal relation, not a metaphysi-
cal grounding.

Grounding and fundamentality

It’s the time to rethink the tenet that no proposition grounds itself,
namely (3).25 Why must we accept it? What the answer looks like 25 My argument in this subsection is in-

spired by Ted Sider’s famous argument
against ungrounded grounding truths.
See, for example, [REF], pp. 748-749.
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and whether it seems plausible depends, I believe, on our under-
standing of grounding. Well, even though we make some further
clarifications of what we talk about when we talk about ground, I feel
the answer will be still vague to a great extent. But let’s have a try.

My favorite strategy is to regard grounding as a kind of connec-
tion between the fundamental and the non-fundamental.26 Since it 26 Someone may think grounding is a

kind of worldly dependence. If nothing
else is added however, I’m not sure
whether grounding must be irreflexive.
Perhaps, for instance, the existence of
God is self-dependent. Many fans of
grounding are inclined to take it as
a kind of metaphysical explanation.
And they emphasize, again and again,
although explanation is an epistemic
notion, metaphysical explanation is
not. This sounds like “a white horse
is not a horse”. To be charitable, I can
at best understand their point in this
way: grounding is a kind of worldly
dependence sharing some significant
formal features with explanation.
Therefore, if you tend to think that
noting explains itself, you may also
hope to insist that nothing grounds
itself. But it is not clear enough to me
whether explanation must be irreflexive
either.

is nearly a conceptual truth that nothing is less fundamental than it-
self, it follows that nothing is self-grounded. To make this idea more
precise, we may enrich our language with a type-⟨σ, σ⟩ predicate ≤σ

F ,
for each σ, denoting the as fundamental as relation of type-σ entities.
Then, two principles:

Grounding the Less Fundamental ∀pq(p ≺ q → ¬(q ≤⟨⟩
F p));

As Fundamental as Itself ∀σx(x ≤σ
F x).

(3) is obviously a consequence of them.
Now, for the sake of argument, consider a particular instance of As

Fundamental as Itself:

(17) ∃F ≤⟨⟩
F ∃F,

where F is a propositional operation. Given (17), should we accept
(18) below on the same ground?

(18) ∃F ≤⟨⟩
F F(∃F).

According to Goodman’s picture, we have

(19) F(∃F) ≺ ∃F,

no matter what F is. If (18), like (17), is in fact true, a similar argu-
ment, like our previous argument against the cases of self-grounding,
can be run. Goodman will then find himself in an embarrassing situ-
ation. He tries to save a principle within his picture, but the ground
of our best reason to save this principle also provides us reason to
rule out his picture.

The truth of (17) is robust because it is invariant under different
conceptions of fundamentality. No doubt (18) can’t be as robust
as (17). But it needs not. As long as it makes sense to endorse (18)
according to the conception of fundamentality widely shared by
those grounding theorists, my aim is achieved. Unfortunately, it is
really hard to articulate such a conception of fundamentality. To
illustrate my argumentative strategy, let’s start with several clearer
ones.

First, by the structuralist conception of fundamentality, being
fundamental is being simple. Thus, the degree of fundamentality is
negatively correlated to the degree of complexity. Under this con-
ception, we have ∃F ≤⟨⟩

F ∃F, as a limit case, and also ∃F ≤⟨⟩
F F(∃F)
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because the latter is more complex than the former. Of course, the
structuralist idea might be problematic due to the Russell-Myhill.27 27 Many friends of grounding embrace

a structuralist picture without reflec-
tion. But there are indeed consistent
structuralist pictures. As Goodman
teaches us, even the most naive idea
of structuralism holds for entities of
recoverable types. A more sophisticated
version of structuralism for all entities
is developed by Bacon ([REF]).

Even though a structured world is too fine-grained, aboutness may
still be a legitimate notion. If so, the following principle seems attrac-
tive:

Combination ∀σxy(y is about everything that x is about → x ≤σ
F y).

A mature theory of aboutness is still wanting,28 and, to be honest, I
28 See Dorr et al. [REF], §15.3 for a
basic theory of aboutness. What we
need here, I guess, should be a more
comprehensive theory.

really don’t know how to regiment “y is about everything that x is
about” formally—the difficulty is to regiment “everything” in a finite
length. But an intuitive grasp of this notion is enough. Again, notice
that (17) (and As Fundamental as Itself) are entailed by Combination
provided that everything is about everything that itself is about. It is
also intuitive that ∃F is not about more things than F(∃F), so (18) is
true. Of course, not all grounding theorists are willing to accept all
instances of Combination.29 29 Intuitively, ¬ϕ is about everything

that ¬¬¬ϕ is about. So by Combina-
tion, ¬¬¬ϕ ≤⟨⟩

F ¬ϕ. But for many guys,
∀p(p → p ≺ ¬¬p), though I myself
tend to accept ∀p(p = ¬¬p).

Grounding theorists are inclined to understand fundamentality
in terms of grounding. One basic idea is that grounding introduces
some new non-propositional entities which are non-fundamental.
For example, ϕ and ψ jointly ground their conjunction ϕ ∧ ψ. ∧ is
somehow new for both ϕ and ψ even though ϕ or ψ may involve ∧.
Clearly, a proposition has nothing new for itself. And it is hard to say
that ∃F has something new for F(∃F).
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