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(1) Every student of mine was born on a Monday. 
(2) Every whale is a mammal. 

An explanation for (1):  
• My students are , and  was born on a Monday,…,  was born on a Monday. 

- This is an (partially) instance-based explanation of (1). 

Some explanations of (2): 
• It’s essential to whale-hood that every whale is a mammal. 
• Part of what it is to be a whale is to be a mammal. ( ) 
• It’s a consequence of some non-Humean laws of nature that every whale is a mammal.  

- These are (purely) generic explanations of (2). 

(To say that (2) admits of generic explanation is not to deny that it may also have instance-based 
based explanation, perhaps by listing all the whales there are and note that each is a mammal.) 

The proposed explanation of (1) is not purely instance based, because the universal quantifier in 
(1) may well be unrestricted in scope, but its explanation doesn’t mention everything. 

Linnebo has three main aims in this paper 
• To develop a truthmaker semantics for universal generalizations which would hopefully shed 

light on how instance-based and generic explanations work. 
• To show that, where the domain doesn’t have a definite range of instances, instance-based 

explanations are not always available. 
• To show that, when instance-based explanations are available, the logic of the quantifiers is 

classical. When instance-based explanations are not available, intuitionistic logic remains 
valid. 

1. Why generic explanations are needed 

Linnebo gives some examples where a universal generalization has only generic explanations. 

• If the future is metaphysically open, it’s indeterminate what whales will come into existence. 
So it’s impossible to list all the instances of (1). So on such a view, (1) doesn’t have a purely 
generic explanation 
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• According to set-theoretic potentialism, there’s no totality of all sets. If so, it’s impossible to 
consider all sets. So there’s no purely instance-based explanation of the propositions like every 
set has a power set. 

• Suppose that what exists depends on “which concepts we bring to bear in our thoughts and 
theories”, such that there’s no “definite totality of absolutely all objects”. Then, presumably, 
there’s no purely instance-based explanation of absolutely universal generalizations. 

• Here’s a way of articulating the “hierarchical conception of reality”. Each truth is assigned a 
level, k, which should by fully explained by truths of levels . Consider a universal 
generalization , of level i. One of its instances would be , which would 
presumably be of level . So some instance of  is of a higher-level, but  
should be explained by truths of lower-levels. So  can’t be explained by all of its 
instances. 

• If mathematical truths are explained by finite proofs, then no universal generalization over 
infinite domains has a wholly instance-based explanation. 

2. Intrinsic truthmaking 

The central notion of Linnebo’s truthmaker semantics is that of a state s verifying a formula 
relative to a variable assignment : , where . 

We have a set of states S, a partial order  on S, and a fusion operation  on S. We can think of  
as saying one state’s being less or equally informative than another. There’s a bottom state  of 
the ordering , which we can think of as having no informational content. And there’s an 
inconsistent top state , which verifies all statements. 

One distinctive feature of Linnebo’s version of truthmaker semantics is that it is inexact. The 
notion of verification of his account is monotonic, in the following sense:     

If  and , then . 

Here’s how Linnebo motivates the monotonic character of his semantics: “My target idea is that 
a state s verifies a statement φ just in case material intrinsic to s suffices to explain φ, leaving no 
need to “look beyond” s to account for the truth of φ. The truth of φ is in this sense intrinsic to 
s.” (p.357) 
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A state s is atomic                          iff    . 
A state s is maximally consistent   iff    . 

Example 1.  
Consider a system consisting of two balls, b1 and b2, each of which can be either red or green. We 
thus have four atomic states, which we designate r1, r2, g1, and g2. The maximal consistent states 
are r1 ⊔ r2, r1 ⊔ g2, g1 ⊔ r2, and g1 ⊔ g2. Other fusions of distinct atomic states are inconsistent: r1 

⊔ g1 = r2 ⊔ g2 = 1. 

Holding the domain fixed, what verifies ? A natural answer is: . This is an 
example of instance-based verification. 

Example 3. Consider a system consisting of a countable infinity of balls, bi for i ∈  ω, each of 
which can be green or either of two non-overlapping shades of red, namely crimson and scarlet. 
The atomic states are gi and ri for each i. The maximal consistent states are obtained by choosing 
one of gi , ci , and si , for each i, and fusing all the chosen states.  

What verifies ? This seems to require no information about what the colors of the 
balls are. So a natural answer is: . 

To systematize our judgments about these particular cases, let’s now lay out semantic clauses for 
logically complex formulas. 

            iff           and . 
            iff          or . 
          iff         for each t, if  then . 

∀t (t < s → t = 0)
∀t (s < t → t = 1)

∀x R x r1 ⊔ r2 ⊩ ∀x R x

∀x (Cx → R x)
0 ⊩ ∀x (Cx → R x)

s ⊩ ϕ ∧ ψ s ⊩ ϕ s ⊩ ψ
s ⊩ ϕ ∨ ψ s ⊩ ϕ s ⊩ ψ
s ⊩ ϕ → ψ t ⊩ ϕ t ⊔ s ⊩ ψ
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• For example, in Example 1, , because . Also, 
, because . 

                iff         . 
• We might say that  excludes  iff the fusion of s with any state that verifies  is the 

inconsistent state. Thus, the clause says that  iff s excludes . 

For the semantic clauses for quantifiers, we associate each state  with a domain D(s). Intuitively, 
D(s) is the set of objects that  is about. For example, D( ) in Example 1 is . 

         iff          , for some  
         iff          , for every t and every . 

“It would be unreasonable to require that, for a state s to verify a universal generalization ∀x 
φ(x), the state s verify each instance φ(a) completely on its own. Since s may “know” nothing 
about a, we may need information about what object a is.” (p.362-363) 

3. Instance-based versus generic verification 

Recall the opening example (1): Every student of mine was born on a Monday. Suppose that 
. Note that  arguably doesn’t verify (1), since I could have had more 

students. So we also need a totality state .  

Is purely instance based verification possible? That is, is there a state s that verifies  
without involving any sort of generic verification or totality states? 

- The answer would be negative, given this assumption: for any state s there is an extension 
 with a strictly larger domain. Given this assumption, if , s must verify 

that some objects that s is not about is also , which means that the verification must be 
partially generic or involve totality states. 

Some characteristics of instance-based and generic verification 
Instance-based: 
• Low uniformity: the verifier can be “factorized” as a fusion of totality states and particular 

states. 
• High aboutness: the verifier is about many objects. 
• Low modal robustness: supposing that , then given a “larger” totality state 

T,    could fail to verify the universal generalization. 

r2 ⊩ Rb1 → (Rb1 ∧ Rb2) r1 ⊔ r2 ⊩ Rb1 ∧ Rb2
g1 ⊩ Rb1 → (Rb1 ∧ Rb2) g1 ⊔ r1 = 1 ⊩ Rb1 ∧ Rb2

s ⊩ ¬ϕ ∀t (t ⊩ ϕ → t ⊔ s ⊩ ⊥ )
s ϕ ϕ

s ⊩ ¬ϕ ϕ

s
s g1 b1

s ⊩ ∃xϕ(x) s ⊩ ϕ(a) a ∈ D(s)
s ⊩ ∀xϕ(x) s ⊔ t ⊩ ϕ(a) a ∈ D(t)

si ⊩ Mai s1 ⊔ . . . ⊔ sm
t ⊩ ∀x (Sx → (x = a1 ∨ . . . ∨ x = am))

∀xϕ(x)

s′ ≥ s s ⊩ ∀xϕ(x)
ϕ

s = s1 ⊔ . . . ⊔ sm ⊔ t
s1 ⊔ . . . ⊔ sm ⊔ T
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Generic: 
• High uniformity: the verifier doesn’t contain totality states and can’t be factorized into simpler 

states. 
• Low aboutness: the verifier need not be about any particular objects. 
• High modal robustness: the verifier could still verify the universal generalization were there to 

be more objects. 

Which true universal generalizations admit of which type of explanation? 
• Since generic explanations are uniform across all instances, it’s unavailable for merely 

accidental universal generalizations. 
• If there is not a definite domain of all objects, there is not a definite range of all instances to 

consider for the purposes of giving an entirely instance-based explanation. If there’s no definite 
range of all objects, then there’s no state that is about all objects. But such a state is required 
for purely instance-based verification. 

4. The logic of quantification 

We can have two intuitive notions of logical truths. The first one says that logical truths are those 
verified by the trivial state . The second says that logical truths are those verified by each 
maximally consistent state (  true in every possible world). 

The two notions of logical truths correspond to two consequence relations: 

Definition 1.

(a) Let  iff: for every state space S and every state , if s verifies every member of 
, then s verifies  as well.

(b) Let  mean that, for every state space S and every maximal consistent , if s 
verifies every member of , then s verifies  as well. 

These two consequence relations correspond to intuitionistic and classical deductibility, 
respectively:  

Proposition 1. Consider the language of first-order logic. Let  and  represent 
deducibility in intuitionistic and classical logic, respectively. Then: 

0
≈

Σ ⊧ ϕ s ∈ S
Σ ϕ

Σ ⊧* ϕ s ∈ S
Σ ϕ

⊢IL ⊢CL
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(a)  iff  . In particular,  iff  for every sentence  and every state 
space S. 

(b)  iff  . In particular,  iff  for every  sentence  and every 
state space S and every maximal consistent . 

Now, suppose that there’s no definite domain of all objects, such that purely instance-based 
explanation is unavailable. Then maximal consistent states are not always available, since the 
fusion operation must be restricted to states that are simultaneously available. So, when purely 
instance-based explanation is unavailable, we can’t always have classical logic, but intuitionistic 
logic remains valid. 

5. Semi-intuitionistic logic 

In the final section, Linnebo describes a “semi-intuitionistic” logic, which is a result of adding 
the following two principles to intuitionistic logic: 

(BOM)  

This principle ensures that quantification restricted to a plurality behaves classically, and admits 
of instance-based explanation. This turns out to be a logical truth in the sense of being verified by 

.

(At-LEM) , where Ps are atomic predicates of the language.

This principle says that the only source of non-classical behavior are the quantifiers.

Σ ⊢IL ϕ Σ ⊧ ϕ ⊢IL ϕ 0 ⊩ ϕ ϕ

Σ ⊢CL ϕ Σ ⊧* ϕ ⊢CL ϕ s ⊩ ϕ ϕ
s ∈ S

∀y y(( ∀x ≺ y y)(ϕ(x) ∨ ¬ϕ(x)) → ( ∀x ≺ y y)ϕ(x) ∨ (∃x ≺ y y)¬ϕ(x))

0

∀x̄(Px̄ ∨ ¬Px̄)
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