Alexander Roberts 'From Physical to Metaphysical Necessity'

Tom Lingzhi Shi

STRUCTURA Metaphysics Reading Group 2022.3.13

1 Physical Necessity

Nomological Bound (informal): Nothing is objectively possible beyond what is physically possible.

Nomological Bridges (informal): The boundaries of objective possibility can be characterized in terms of physical necessity.

 $Model - World^+$: *p* is physically possible at a world just in case *p* is true according to some world proposition associated with a model of the laws of nature.

PN: A world *v* is physically possible from a world *w* if and only if every law of *w* is true at *v*. *PN*^{*}: A world *v* is physically possible from a world *w* if and only if every law of *w*

is a law at v.

 PN^{\dagger} : A world *v* is physically possible from a world *w* if and only if *v* has the exact same laws as *w*.

2 Formal Preliminaries

2.1 The core theory-Booleanism

PC: All instances of propositional tautologies. *MP*: From *A* and *A* \rightarrow *B* infer *B*. *Gen*: From *A* \rightarrow *B* infer *A* \rightarrow $\forall_{\sigma} x B$ when *x* does not occur free in *A*. *UI*: $\forall_{\sigma} x A \rightarrow A[t/x]$ (where $t : \sigma$ and is substitutable for *x* in ϕ). $\beta \eta$: $A \leftrightarrow B$ whenever A : t and B : t are $\beta \eta$ equivalent. *RE*: $A =_t B$, whenever $A \leftrightarrow B$ is provable from these axioms and rules.

According to Booleanism, there is a unique tautologous proposition.

2.2 Necessities

Definition 1 (Weak Necessity) $Nec^- := \lambda X.X^{\top}$

Definition 2 (*Necessity*) $Nec := \lambda X \forall Y (Nec^{-}(Y) \rightarrow YX^{-})$

Proposition 3 $L := \lambda p.(\top = p)$ is a weak necessity.

Proposition 4 If X is a necessity, then $X \top = \top$.

PROOF Since Nec(X), by definition we have $\forall Y(Nec^{-}(Y) \rightarrow YX^{-})$. It follows that LX^{-} , which is $X^{-} = T$.

Definition 5 (Broadness) $Br := \lambda Y \lambda Z \forall X (Nec(X) \rightarrow X \forall p(Yp \rightarrow Zp))$

2.3 Objective Necessities

Definition 6 (Kripke Necessity) $K := \lambda X(Nec(X) \land \forall Y(O(Y) \rightarrow Y \forall p \forall q(X(p \rightarrow q) \rightarrow Xp \rightarrow Xq)))$

Kripke $\forall X(O(X) \rightarrow K(X))$

Truth $O(\lambda p.p)$

Basis $O(\blacksquare)$

Composition: $\forall X \forall Y(O(X) \land O(Y) \rightarrow O(\lambda p.XYp))$ Conjunction: $\forall X \forall Y(O(X) \land O(Y) \rightarrow O(\lambda p(Xp \land Yp)))$

Definition 7 (Iteration) It := $\lambda Y_1 \lambda Y_2 \forall X(X \lambda p.p \rightarrow (\forall Y_3(XY_3 \rightarrow X \lambda p.Y_1Y_3p) \rightarrow XY_2))$

Definition 8 (Closure Operator) $Cl := \lambda Y \lambda p . \forall X (It(Y)X \rightarrow Xp)$

Closure: $\forall X(O(X) \rightarrow O(Cl(X)))$

Let *BO* be the system which results from adding these principles to the core theory and closing it under *modus ponens*, universal generalization, and the modest rule that if $\phi \in BO$ then $\forall X(O(X) \rightarrow X\phi) \in BO$.

Definition 9 (Objective Broadness) $Br^O := \lambda Y \lambda Z \forall X (O(X) \rightarrow X \forall p (Yp \rightarrow Zp))$

Definition 10 (*O*-broadest objective) $BON^O := \lambda Y(O(Y) \land \forall X(O(X) \to Br^O(Y, X)))$

Nomological Bound (formal) $BON^{O}(\blacksquare)$

Proposition 11 $\vdash_{BO} \neg \forall p(\blacksquare p \rightarrow \blacksquare \blacksquare p) \rightarrow \neg BON^O(\blacksquare)$

3 BOA

 $Anti-Isolation: \forall X \forall Y (O(X) \land O(Y) \rightarrow Y \exists Z \forall p (It(\blacksquare) Z \land (Zp \rightarrow Xp)))$

Let *BOA* be the system which results from adding Anti-Isolation to *BO* and closing it under *modus ponens*, universal generalization, and the modest rule that if $\phi \in BO$ then $\forall X(O(X) \rightarrow X\phi) \in BO$.

3.1 Modal Subtraction Argument

There is some physically possible world in which one of the actual laws fails to be a law and, crucially, in which no other laws replace it. Therefore, a lawless world is reachable from the actual world by chains of physical possibility.

Consider an X-possible world w (X is an arbitrary objective necessity). Since from that lawless world, w is physically possible, w is also reachable from the actual world by chains of physical possibility.

Proposition 12 $\vdash_{BOA} BON^O(Cl(\blacksquare))$